B Equation
The B equation is simpler but less precise. \[ \frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \ln \left( \frac{R}{R_0} \right) \]
Where:
- T is the temperature in Kelvin.
- \( T_0 \) is the reference temperature (usually 298.15K or 25°C), where the thermistor's resistance is known (typically 10kΩ).
- R is the resistance at temperature T.
- \( R_0 \) is the resistance at the reference temperature \( T_0 \) (often 10kΩ).
- B is the B-value of the thermistor.
The B value is a constant usually provided by the manufacturers, changes based on the material of a thermistor. It describes the gradient of the resistive curve over a specific temperature range between two points(i.e \( T_0 \) vs \( R_0 \) and T vs R). You can even rewrite the above formula to get B value yourself by calibrating the resistance at two temperatures.
Example Calculation:
Given:
- Reference temperature \( T_0 = 298.15K \) (i.e., 25°C + 273.15 to convert to Kelvin)
- Reference resistance \( R_0 = 10k\Omega \)
- B-value B = 3950 (typical for many thermistors)
- Measured resistance at temperature T: 10475Ω
Step 1: Apply the B-parameter equation
Substitute the given values:
\[ \frac{1}{T} = \frac{1}{298.15} + \frac{1}{3950} \ln \left( \frac{10,475}{10,000} \right) \]
\[ \frac{1}{T} = 0.003354016 + \frac{1}{3950} \ln(1.0475) \]
\[ \frac{1}{T} = 0.003354016 + (0.000011748) \]
\[ \frac{1}{T} = 0.003365764 \]
Step 2: Calculate the temperature (T)
\[ T = \frac{1}{0.003365764} = 297.10936358 (Kelvin) \]
Convert to Celsius:
\[ T_{Celsius} = 297.10936358 - 273.15 \approx 23.95936358°C \]
Result:
The temperature corresponding to a resistance of 10475Ω is approximately 23.96°C.
Rust function
const fn kelvin_to_celsius(kelvin: f64) -> f64 { kelvin - 273.15 } const fn celsius_to_kelvin(celsius: f64) -> f64 { celsius + 273.15 } const REF_RES: f64 = 10_000.0; // Reference resistance in ohms (10kΩ) const REF_TEMP: f64 = 25.0; // Reference temperature 25°C const REF_TEMP_K: f64 = celsius_to_kelvin(REF_TEMP); // T0 fn calculate_temperature(current_res: f64, b_val: f64) -> f64 { let ln_value = (current_res/REF_RES).ln(); // let ln_value = libm::log(current_res / ref_res); // use this crate for no_std let inv_t = (1.0 / REF_TEMP_K) + ((1.0 / b_val) * ln_value); 1.0 / inv_t } const B_VALUE: f64 = 3950.0; const V_IN: f64 = 3.3; // Input voltage fn main() { let r = 9546.0; // Measured resistance in ohms let temperature_kelvin = calculate_temperature(r, B_VALUE); let temperature_celsius = kelvin_to_celsius(temperature_kelvin); println!("Temperature: {:.2} °C", temperature_celsius); }